Mordell's inequality for Eisenstein and Hurwitz lattices
نویسنده
چکیده
In this paper we prove a version of Mordell’s inequality for lattices in finite-dimensional complex or quaternionic Hermitian space that are modules over a maximal order in an imaginary quadratic number field or a totally definite rational quaternion algebra. This inequality implies that 16dimensional Barnes-Wall lattice has optimal density among all 16-dimensional lattices with Hurwitz structures.
منابع مشابه
New complex and quaternion-hyperbolic re ection groups
We consider the automorphism groups of various Lorentzian lattices over the Eisenstein, Gaussian, and Hurwitz integers, and in some of them we nd reeection groups of nite index. These provide explicit constructions of new nite-covolume reeection groups acting on complex and quaternionic hyperbolic spaces of high dimensions. Speciically, we provide groups acting on C H n for all n < 6 and n = 7,...
متن کاملNew Complex- and Quaternion-hyperbolic Reflection Groups
We consider the automorphism groups of various Lorentzian lattices over the Eisenstein, Gaussian, and Hurwitz integers, and in some of them we find reflection groups of finite index. These provide new finitecovolume reflection groups acting on complex and quaternionic hyperbolic spaces. Specifically, we provide groups acting on CH for all n < 6 and n = 7, and on HH for n = 1, 2, 3, and 5. We co...
متن کاملA Mordell Inequality for Lattices over Maximal Orders
In this paper we prove an analogue of Mordell’s inequality for lattices in finite-dimensional complex or quaternionic Hermitian space that are modules over a maximal order in an imaginary quadratic number field or a totally definite rational quaternion algebra. This inequality implies that 16dimensional Barnes-Wall lattice has optimal density among all 16-dimensional lattices with Hurwitz struc...
متن کاملEEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations
GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...
متن کاملGoldbach for Gaussian, Hurwitz, Octavian and Eisenstein primes
We formulate Goldbach type questions for Gaussian, Hurwitz, Octavian and Eisenstein primes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0810.2336 شماره
صفحات -
تاریخ انتشار 2008